Exercise 29

Find an equation for the plane that passes through the point $(1,2,-3)$ and is perpendicular to the line $\mathbf{v}=(0,-2,1)+t(1,-2,3)$.

Solution

The equation for a plane is

$$
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0,
$$

where \mathbf{n} is a vector normal to the plane and \mathbf{r}_{0} is the position vector for any point in the plane. The direction vector of the line, $(1,-2,3)$, serves as a normal vector to the plane, and $(1,2,-3)$ is the needed position vector.

$$
\begin{gathered}
(1,-2,3) \cdot(x-1, y-2, z+3)=0 \\
1(x-1)-2(y-2)+3(z+3)=0 \\
x-1-2 y+4+3 z+9=0 \\
x-2 y+3 z=-12
\end{gathered}
$$

